Exercise 9

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}-3 u^{\prime}-10 u=0, \quad u(0)=2, u^{\prime}(0)=3
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-3 r e^{r x}-10 e^{r x}=0 .
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-3 r-10=0
$$

Factor the left side.

$$
(r-5)(r+2)=0
$$

$r=-2$ or $r=5$, so the general solution is

$$
u(x)=C_{1} e^{-2 x}+C_{2} e^{5 x} .
$$

Because we have two initial conditions, we can determine C_{1} and C_{2}.

$$
\begin{aligned}
u^{\prime}(x) & =-2 C_{1} e^{-2 x}+5 C_{2} e^{5 x} \\
u(0) & =C_{1} e^{0}+C_{2} e^{0}=2 \\
u^{\prime}(0) & =-2 C_{1} e^{0}+5 C_{2} e^{0}=3
\end{aligned}
$$

Solving this system of equations gives $C_{1}=1$ and $C_{2}=1$. Therefore,

$$
u(x)=e^{-2 x}+e^{5 x} .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =-2 e^{-2 x}+5 e^{5 x} \\
u^{\prime \prime} & =4 e^{-2 x}+25 e^{5 x}
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-3 u^{\prime}-10 u=4 e^{-2 x}+25 e^{5 x}-3\left(-2 e^{-2 x}+5 e^{5 x}\right)-10\left(e^{-2 x}+e^{5 x}\right)=0,
$$

which means this is the correct solution.

